Influence of Stellar Multiplicity on Planet Formation. Ii. Planets Are Less Common in Multiple-star Systems with Separations Smaller than 1500 Au

نویسندگان

  • Ji Wang
  • Debra A. Fischer
  • Ji-Wei Xie
  • David R. Ciardi
چکیده

Almost half of the stellar systems in the solar neighborhood are made up of multiple stars. In multiple-star systems, planet formation is under the dynamical influence of stellar companions, and the planet occurrence rate is expected to be different from that for single stars. There have been numerous studies on the planet occurrence rate of single star systems. However, to fully understand planet formation, the planet occurrence rate in multiplestar systems needs to be addressed. In this work, we infer the planet occurrence rate in multiple-star systems by measuring the stellar multiplicity rate for planet host stars. For a sub-sample of 56 Kepler planet host stars, we use adaptive optics (AO) imaging and the radial velocity (RV) technique to search for stellar companions. The combination of these two techniques results in high search completeness for stellar companions. We detect 59 visual stellar companions to 25 planet host stars with AO data. Three stellar companions are within 2, and 27 within 6. We also detect 2 possible stellar companions (KOI 5 and KOI 69) showing long-term RV acceleration. After correcting for a bias against planet detection in multiple-star systems due to flux contamination, we find that planet formation is suppressed in multiple-star systems with separations smaller than 1500 AU. Specifically, we find that compared to single star systems, planets in multiple-star systems occur 4.5± 3.2, 2.6±1.0, and 1.7±0.5 times less frequently when a stellar companion is present at a distance of 10, 100, and 1000 AU, respectively. This conclusion applies only to circumstellar planets; the planet occurrence rate for circumbinary planets requires further investigation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Terrestrial Planet Formation Surrounding Close Binary Stars

Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around both components of some young close binary star systems. Additionally, it has been shown that if planets form at the right places within such disks, they can remain dynamically stable for very long ...

متن کامل

Predictions for the Correlation between Giant and Terrestrial Extrasolar Planets in Dynamically Evolved Systems

The large eccentricities of many giant extrasolar planets may represent the endpoint of gravitational scattering in initially more crowded systems. If so, the early evolution of the giant planets is likely to be more restrictive of terrestrial planet formation than would be inferred from the current, dynamically quiescent, configurations. Here, we study statistically the extent of the anti-corr...

متن کامل

Formation, Survival, and Detectability of Planets beyond 100 Au

Direct imaging searches have begun to detect planetary and brown dwarf companions and to place constraints on the presence of giant planets at large separations from their host star. This work helps to motivate such planet searches by predicting a population of young giant planets that could be detectable by direct imaging campaigns. Both the classical core accretion and the gravitational insta...

متن کامل

Gravitational instability in binary protoplanetary disks

We review the models and results of simulations of self-gravitating, gaseous protoplanetary disks in binary star systems. These models have been calculated by three different groups with three different computational methods, two particle-based and one grid-based. We show that interactions with the companion star can affect the temperature distribution and structural evolution of disks, and dis...

متن کامل

Influence of Stellar Multiplicity on Planet Formation. Iv. Adaptive Optics Imaging of Kepler Stars with Multiple Transiting Planet Candidates

The Kepler mission provides a wealth of multiple transiting planet systems (MTPSs). The formation and evolution of multi-planet systems are likely to be influenced by companion stars given the abundance of multiple stellar systems. We study the influence of stellar companions by measuring the stellar multiplicity rate of MTPSs. We select 138 bright (KP < 13.5) Kepler MTPSs and search for stella...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014